isolated jump - ορισμός. Τι είναι το isolated jump
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι isolated jump - ορισμός

THEOREM
Isolated zeros theorem; Isolated zeroes theorem

Isolated growth hormone deficiency         
HYPOPITUITARISM CHARACTERIZED BY ABNORMALLY LOW LEVELS, ABSENCE OR IMPAIRED FUNCTION OF GROWTH HORMONE IN THE ABSENCE OF ABNORMALITIES IN OTHER PITUITARY HORMONES
Isolated human growth hormone deficiency; Isolated human GH deficiency; Isolated hGH deficiency; Isolated HGH deficiency; Familial isolated growth hormone deficiency; Familial growth hormone deficiency; Congenital growth hormone deficiency; Congenital isolated growth hormone deficiency
Isolated growth hormone deficiency (IGHD) is a rare congenital disorder characterized by growth hormone deficiency and postnatal growth failure. It is divided into four subtypes that vary in terms of cause and clinical presentation.
jump-up         
WIKIMEDIA DISAMBIGUATION PAGE
Jump-up; Jump up music; Jumping up; Jump-Up; Jump up (disambiguation); Jump Up!; Jump Up! (album); Jump up; Jump Up (disambiguation)
¦ noun
1. a Caribbean dance or celebration.
2. Austral. informal an escarpment.
Edward Jump         
ARTIST
Edward jump
Edward Jump (1831?-1883) was a French-American artist popular for his drawings and sketches in the United States during the mid-19th Century.

Βικιπαίδεια

Identity theorem

In real analysis and complex analysis, branches of mathematics, the identity theorem for analytic functions states: given functions f and g analytic on a domain D (open and connected subset of R {\displaystyle \mathbb {R} } or C {\displaystyle \mathbb {C} } ), if f = g on some S D {\displaystyle S\subseteq D} , where S {\displaystyle S} has an accumulation point, then f = g on D.

Thus an analytic function is completely determined by its values on a single open neighborhood in D, or even a countable subset of D (provided this contains a converging sequence). This is not true in general for real-differentiable functions, even infinitely real-differentiable functions. In comparison, analytic functions are a much more rigid notion. Informally, one sometimes summarizes the theorem by saying analytic functions are "hard" (as opposed to, say, continuous functions which are "soft").

The underpinning fact from which the theorem is established is the expandability of a holomorphic function into its Taylor series.

The connectedness assumption on the domain D is necessary. For example, if D consists of two disjoint open sets, f {\displaystyle f} can be 0 {\displaystyle 0} on one open set, and 1 {\displaystyle 1} on another, while g {\displaystyle g} is 0 {\displaystyle 0} on one, and 2 {\displaystyle 2} on another.